All Mathematics Formula In Hindi

All Mathematics Formula In Hindi

गणित सूत्र आपके आने वाले सभी प्रतियोगी परीक्षाओं जैसे SSC CGL, SSC CHSL, Bank Exams, Railway, Defense और भी सभी प्रतियोगी परीक्षाओं के लिए बेहद उपयोगी साबित होने वाली है | क्योंकि 1300 Math Formula Book PDF में मैं आपको गणित के सभी विषय के टॉपिक को सॉल्व करने के लिए फार्मूला के साथ-साथ सॉल्व कर बताया गया है | इसलिए आप सभी प्रतियोगी विद्यार्थी Math Formula Notes PDF को डाउनलोड करने के बाद उन सभी फार्मूला को अच्छी तरह जरूर याद कर ले :-

All Mathematics Formula In Hindi {** गणित सूत्र PDF में **}

Algebra Math Formula (बीजगणित सूत्र)

दोस्तों नीचे दिए गए लेख के माध्यम से algebra formulas pdf को डाउनलोड कर सकते हैं एवं लेख के माध्यम से भी याद कर सकते हैं बीजगणित सूत्र !!

No.-1. a2 – b2 = (a – b)(a + b)

No.- 2. (a+b)2 = a2 + 2ab + b2

No.-3. a2 + b2 = (a – b)2 + 2ab

No.- 4. (a – b)2 = a2 – 2ab + b2

No.- 5. (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc

No.- 6. (a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc

No.- 7. (a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)

No.- 8. (a – b)3 = a3 – 3a2b + 3ab2 – b3

No.-+9. a3 – b3 = (a – b)(a2 + ab + b2)

No.-10. a3 + b3 = (a + b)(a2 – ab + b2)

No.-11. (a + b)3 = a3 + 3a2b + 3ab2 + b3

No.-12. (a – b)3 = a3 – 3a2b + 3ab2 – b3

No.-13. (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)

No.- 14. (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)

No.-15. a4 – b4 = (a – b)(a + b)(a2 + b2)

No.-16. a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)

No.-17. If n is a natural number :- an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)

No.-18. If n is even :- (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)

No.-19. If n is odd :- (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)

No.- 20. (a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….)

No.-21. Laws of Exponents :- (am)(an) = am+n (ab)m = ambm (am)n = amn

No.-22. Fractional Exponents :- a0 = 1 aman=am−n am = 1a−m a−m = 1am

Roots of Quadratic Equation :-

No.-1. For a quadratic equation ax2 + bx + c where a ≠ 0, the roots will be given by the equation as −b±b2−4ac√2a

No.-2. Δ = b2 − 4ac is called the discrimination

No.-3. For real and distinct roots, Δ > 0

No.-4. For real and coincident roots, Δ = 0

No.-5. For non-real roots, Δ < 0

No.-6. If α and β are the two roots of the equation ax2 + bx + c then, α + β = (-b / a) and α × β = (c / a).

No.-7. If the roots of a quadratic equation are α and β, the equation will be (x − α)(x − β) = 0

Factorials :-

No.-1. n! = (1).(2).(3)…..(n − 1).n

No.-2. n! = n(n − 1)! = n(n − 1)(n − 2)! = ….

No.-3. 0! = 1

No.- 4. (a+b)n=an+nan−1b+n(n−1)2!an−2b2+n(n−1)(n−2)3!an−3b3+….+bn,where,n>1

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top